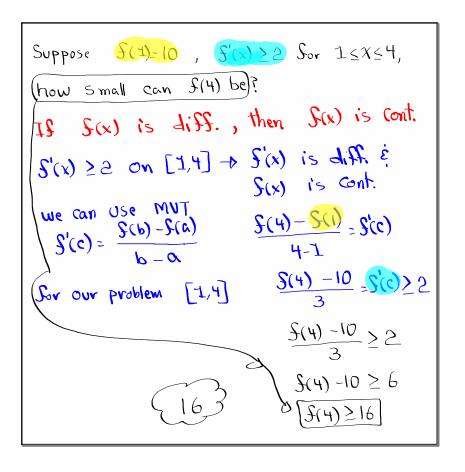


Verify all Conditions by Rolle's theorem, and find all numbers c that satisfy the Conclusion of Polle's Thrm for
$$\sqrt{1}$$
 $S(x)$ cont. [a,b] $S(x) = \sqrt{1} = \frac{1}{3}x$ on $[0,9]$ $\sqrt{2}$ $S(x)$ $S(x) = \frac{1}{3}x$ on $[0,9]$ $S(0) = 0$ $S(0) = 0$

```
Show that f(x) satisfy all conditions
by MVT, then find all numbers C that
is in the Conclusion of MVT.

(1) f(x) cont. [a,b] f(x) = \frac{1}{x} f(x) = \frac
```



Sind a Sunction
$$S(x)$$
 is exists such that $S(0)=-1$, $S(2)=4$, and $S'(x)\leq 2$ for all x .

 $S(x)\leq 2$ $\forall x$ $S(x)$ is diff., then $S(x)$ is cont. Sor $\forall x$.

By MUT

 $S'(c)=\frac{S(b)-S(a)}{b-a}$

Our interval is $[0,2]$
 $\frac{5}{2}\leq 2$

No Such Sunction on $[0,2]$ $\frac{5}{2}\leq 2$

No Such Sunction on $[0,2]$ $\frac{5}{2}\leq 2$
 $S(0)=-1$, $S(2)=4$, and $S(3)\leq 2$

Suppose
$$3 \le S'(x) \le 5$$
 for all values of x ,

Show that $18 \le S(8) - S(2) \le 30$.

Use $[2,8]$
 $S(x)$ is cont.
 $S(x)$ is diff. \Rightarrow cont.

 $S(x)$ is diff.

By MUT $S'(c) = \frac{S(b) - S(a)}{b - 0}$
 $\frac{S(8) - S(2)}{8 - 2} = S'(c)$

but $3 \le S'(x) \le 5 \Rightarrow 3 \le S(8) - S(2) \le 5$

Multiply by 6
 $18 \le S(8) - S(2) \le 30$

